Surname
Other Names

Centre Number

Candidate Number

GCE ASIA LEVEL

2500U10-1
||
S18-2500U10-1

COMPUTER SCIENCE - AS unit 1

Fundamentals of Computer Science
MONDAY, 4 JUNE 2018 - MORNING
2 hours

Suitable for Modified

Language Candidates

ADDITIONAL MATERIALS

A calculator.

INSTRUCTIONS TO CANDIDATES

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	4	
2.	3	
3.	8	
4.	8	
5.	9	
6.	5	
7.	5	
8.	8	
9.	9	
10.	11	
11.	11	
12.	8	
13.	11	
Total	100	

Use black ink or black ball-point pen.
Answer all questions.
Write your name, centre number and candidate number in the spaces at the top of this page.
Write your answers in the spaces provided in this booklet. If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
The total number of marks available is 100 .
Assessment will take into account the quality of written communication used in your answers.

Answer all questions.

1. Complete the following truth table.
[4]

A	B	C	A OR C	B AND C	(A OR C) XOR (B AND C)	NOT ((A OR C) XOR (B AND C))
0	0	0				
0	1	0				
1	0	0				
1	1	0				
0	0	1				
0	1	1				
1	0	1				
1	1	1				

2. State the use of the following network protocols:
(a) DHCP
\qquad
\qquad
\qquad
(b) SMTP
\qquad
\qquad
\qquad
(c) HTTP
\qquad
\qquad
\qquad
3. (a) Describe the dangers that can arise from the use of computers to store personal data.
\qquad
(b) Describe processes that protect the security and integrity of data.
4. Clearly show each step. Simplify the following expression using Boolean identities and rules:

$$
A \cdot(\bar{A}+B)+\bar{C} \cdot(A+B)+A \cdot(\bar{B}+C)+\bar{B} \cdot B
$$

5. (a) Convert 31_{16} and $6 \mathrm{D}_{16}$ into binary numbers. Add them together using binary addition.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) In a certain computer system, real numbers are stored in floating point form using two's complementation, a 12 bit mantissa and a 4 bit exponent.

Convert the number 16.125_{10} into this floating point form.
\qquad
\qquad
(ii) In a different computer system, real numbers are stored in floating point form using two's complementation, a 5 bit mantissa and a 3 bit exponent.

Show your workings. Calculate the largest positive denary number that this computer system can store.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. PhoneRecycle allows customers to trade in their handsets in return for vouchers. These can be spent in other retail stores.

The total number of handsets traded-in with each member of staff is recorded each month. This is shown in the grid below:

Staff Code	Total number of handsets recycled each month					
	Jan	Feb	Mar	Apr	May	...
001	34	43	23	51
002	26	47	54	14
003	\ldots	\ldots	\ldots	...
...	\ldots	\ldots	...	\ldots	...	\ldots

(a) State the full name of this type of data structure. State why this structure is the most appropriate for PhoneRecycle.
\qquad
\qquad
\qquad
\qquad
(b) State the most suitable data type for this structure.
\qquad
\qquad
(c) PhoneRecycle also stores customer details. State the most suitable data structure to store this information. Justify your choice.
\qquad
\qquad
\qquad
\qquad
\qquad
7. Certain central processing units (CPUs) use parallel processing and caching to improve performance.

Explain parallel processing and caching in a CPU.
\qquad
8. EuroTravel is a travel agency that offers its customers the option of purchasing foreign currency. Assume the conversion from pounds $(£)$ into euros $(€)$ is:

$$
£ 1.00=€ 1.14
$$

EuroTravel wants to be able to enter a value in pounds and provide its customers with a conversion into euros for each value $£ 5$ below and $£ 5$ above the initial value input.

For example, if the user inputs $£ 500.00$, the algorithm will output:

$$
\begin{aligned}
£ 495.00 & =€ 564.30 \\
£ 496.00 & =€ 565.44 \\
£ 497.00 & =€ 566.58 \\
£ 498.00 & =€ 567.72 \\
£ 499.00 & =€ 568.86 \\
£ 500.00 & =€ 570.00 \\
£ 501.00 & =€ 571.14 \\
£ 502.00 & =€ 572.28 \\
£ 503.00 & =€ 573.42 \\
£ 504.00 & =€ 574.56 \\
£ 505.00 & =€ 575.70
\end{aligned}
$$

Use pseudo-code. Write an algorithm for EuroTravel to meet these requirements.
Your algorithm should output a suitable error message for any data entered that is not a number. Your algorithm should be written using self-documenting identifiers.
\qquad
9. Two different types of search algorithm are linear search and binary search.
(a) Explain how these search algorithms operate.
\qquad
(b) Describe appropriate circumstances for the use of each search algorithm.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

10. The following bubble sort algorithm attempts to sort integers stored in myArray. It contains an error.
```
1 Start Procedure SortMyArray
n is integer
3 temp is integer
4 swapped is boolean
5
6 set n = length(myArray) {returns the length of myArray}
repeat
set swapped = FALSE
9 for i = 0 to ( }\textrm{n}-1
10 if myArray[i] < myArray[i + 1] then
                    temp = myArray[i + 1]
                myArray[i + 1] = myArray[i]
                myArray[i] = temp
                swapped = TRUE
        end if
    end for
    until (swapped = TRUE)
    End Procedure
```

(a) Suggest appropriate test data to dry-run this type of algorithm in order to identify possible errors.

Test Data Set 1

Test Data Set 2

Test Data Set 3

(b) Describe how a bubble sort algorithm should operate.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Explain why the bubble sort algorithm in this question will fail.
(a)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Suggest a suitable change that could be made to the algorithm to overcome this problem.
\qquad
\qquad
\qquad
\qquad
(e) Name and describe a different sort algorithm.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Explain how an operating system manages computer resources.
\qquad
12. Compare bespoke and off-the-shelf software.
\qquad

[^1]Describe the role of the computer in weather forecasting.
\qquad

BLANK PAGE

For continuation only.

[^0]: Examiner
 11. Operating systems manage computer resources and provide users with a range of utility software.
 (a) Explain the use of a range of utility software in computer systems.

[^1]: 13. An analyst has been commissioned to produce a new computer based system for weather forecasting.

 Discuss the purpose of a feasibility study. Describe the processes that an analyst would carry out during a feasibility study.

